DGC III Filament Select Relay

The DGC III ion gauge controller (also called the DIG 3) used on many of the older PHI surface analysis systems can operate 2 ion gauges (only one at a time). There is a relay inside the DGC III that puts the filament current output to the ion gauge connectors on the back of the DGC III. Normally there is only one ion gauge on the vacuum chamber and it is plugged into the Ion Gauge 1 connector (normally closed) on the back of the DGC III. The relay is shown in the photo below.

DGC III filament select relay

If your DGC III does not read correctly, you can first check the +/-12V and +5V power supplies. Here is a link to some information on how to do that – DGC III power supplies test. If any of the power supplies are low and have a high AC component, then usually that issue is caused by a leaky capacitor on the power supply board. ** CAUTION! Make sure that someone who is trained on working safely with voltages up to 500V performs the voltage measurements. There are potentially lethal voltages inside the DGC III.**

If the power supplies check out OK then it is possible that the filament select relay is dirty. To test that, make sure that the DGC III is OFF and then move the black filament cable on the back of the DGC III from filament 1 to filament 2. You do not need to move the COL BNC cable as those are both tied together.

Turn the DGC III back on and press the 2 button. That will select ion gauge 2. Press the I/T 3 button to measure the vacuum and see if the DGC III works normally. If it does, then the filament select relay is dirty. You can just keep the ion gauge connected to ion gauge 2, or, you can clean the relay and connect the ion gauge back to ion gauge 1.

To clean the relay, make sure that the power is OFF to the DGC III and if not already down, pull the unit out of the rack and remove the cover.

Pull the relay out and remove the 4 screws on the bottom of the relay.

The contacts that are touching are the normally closed ion gauge 1 contacts. Use a small strip of some very fine emery cloth or sandpaper to gently clean the contacts on both sides. Then, use a small strip of paper with some isopropyl alcohol on it to remove the leftover grit. Replace the cover on the relay and reinstall the relay.

Ion gauge 1 should work properly now but if not you can order a new relay from companies like Grainger or Mouser. Just make sure that the pins match schematic that is on the side of the relay. Google 105 3PDT 10A relay and you will find it.

If your DGC III does not work and you need some help or a loaner, please contact RBD Instruments for assistance.

04-303 Differential Aperture Improvement

The differential aperture in the PHI 04-303 5kV ion source provides two functions:

  • It helps to shape the ion beam.
  • It restricts the gas in the ionizer, which is at a higher pressure, from entering the vacuum chamber.

The differential aperture is made from stainless steel and after years of normal use the aperture becomes sputtered away, resulting in a misshaped ion beam and higher system pressure.

RBD has designed an insert aperture that is made out of tungsten and which will last for many years. 

The pictures below show a worn-out aperture and our new insert aperture.

Old worn out 04-303 aperture
New 04-303 aperture

Our 04-303 ion source rebuild service now includes this aperture as part of our rebuilding procedure.

So, when your 04-303 needs to be serviced, please contact us for more information about how our rebuild service improves the shape of the ion beam, reduces the pressure in the system for years to come, and saves you money.

Differential aperture for 04-303 ion source
04-303 ion source

Transistor Heat Sink Fatigue

Some of the older PHI electronic units have a type of heat sink with a built-in spring tab (shown in the picture below) that forces the back of a transistor into the heat sink.  Over time, the spring tab can lose tension (most likely due to heat induced metal fatigue) and then the transistor no longer connects to the heat sink, eventually resulting in the transistor failing due to overheating.

For units such as the 32-100 Electron Multiplier Supply, overheated transistors are often the cause of multiplier voltage output problems. 

For this blog post we will look at a 32-100 electron multiplier supply with no output on the CMA high voltage output. The problem was isolated to a bad TIP120 transistor which shorted out and melted because the back of the transistor separated from the heat sink over time.

In addition to replacing the TIP120 transistor, we also modified the heat sink to ensure a good contact with the transistor. 

To modify the heat sink, you need to first remove the defective transistor and then remove the heat sink.  You will need a hot soldering iron as the heat sink has enough mass that it will drain away some of the heat from the soldering iron.   You can use a solder sucker or some solder braid to remove the solder from the heat sink contacts.

Once the heat sink as been removed, break off the spring tab.

Next, drill a small hole in the back of the heat sink where the indent is located. We used a 9/64″ drill bit since we needed to clear a 6-32 screw and lock nut.

Put some heat sink compound or conductive tape on the back of the replacement transistor.  This is necessary to ensure good thermal transfer from the transistor to the heat sink.

Use a screw and lock nut to attach the transistor to the heat sink.  Make sure that the transistor is centered in the heat sink.   In this case we also added another small heat sink to the back of the original heat sink to add some additional cooling for the transistor.

Next, insert the transistor leads into the holes on the board and insert the heat sink into the larger holes in the board.   Solder the heat sink and the transistor leads.  Cut the excess leads from the transistor and remove any excess flux from the board.

Now that we have replaced the transistor and improved the transistor to heat sink contact, the 32-100 should perform well for many years.

Since we were replacing the one defective TIP120 transistor, we also replaced the one for the SED supply as well (and modified its heat sink) as a preventive measure.  In this case we could not add the extra small heat sink due to a tight clearance to the nearby transformer. Even so, the improved contact to the heat sink will provide improved heat transfer from the transistor and result in improved reliability.

Need help with your older PHI (Physical Electronics) surface analysis system electronics (or optics)? Contact us for more information.