AVC Up to Air relay update

Print Friendly, PDF & Email

The Auto Valve Controller (AVC) is used to open and close valves on PHI surface analysis systems such as the 5000 series XPS and 660 scanning Auger systems.  The AVC has a small built in microprocessor and so it also has the ability to protect the user from inadvertently opening a valve out of sequence and dumping the system.

The AVC needs to know that the turbo pump is on before certain valve functions are available. For example the V4 ion gun differential pump valve will not open under any circumstance if the turbo pump is not on.

So, how does the AVC know that the turbo pump is on? The Up to Air relay in the AVC auto valve controller is energized by a voltage from the turbo pump controller.

Up to Air relay inside AVC

Up to Air relay inside AVC

 

 

 

 

 

 

 

When the AVC was designed PHI used Balzers (now Pfeifers) turbo pumps which had a 240 VAC output voltage when the turbo pump controller was ON.  So, the Up to Air relay in most AVCs has a 240VAC coil.

Fast forward to today and some of those original Balzers/Pfeifers turbo pumps and controllers are now obsolete.  So when one of those controllers fails, it needs to be replaced with a new state of the art turbo pump and controller.

These days most turbo pump controllers have a 24 V DC output voltage that can be used to control the AVC up to air relay.  Both Edwards and Pfeifers have low cost replacement packages that are 4.5” CF flange mounted and also dry pumped backed. See information on those pumps at the bottom of this post.

The direct replacement 24 V DC  Up to Air relay is Grainger part number 1YCZ6.  This relay is the same form factor as the original Up to Air relay only it has a 24V DC coil instead of a 240 VAC coil.

24V up to air relay

24V up to air relay

 

 

 

 

 

 

 

 

 

Updating an AVC to this relay is a simple two-step process;

  1. Replace the Up to Air relay in the AVC
  2. Connect the Up to Air cable to the new turbo pump controller.

To replace the Up to Air relay in the AVC first make sure that all valves are closed and that the turbo pump is OFF.

Turn OFF the AVC and also unplug the power from the back of the AVC control.  Depending on your system configuration the AVC is located in the front left hand side of the electronics console, or in the back of the vacuum console.

If the solenoid manifold is located on top of the AVC, remove the screws that hold the manifold to the cover and then remove the cover from the AVC.  You should be able to move the solenoid manifold towards the back of the AVC and not need to unplug the wire bulkhead connector. Just balance the manifold on the edge of the AVC chassis.

If your AVC has the solenoid manifold mounted on the back of the AVC, then just remove the AVC cover.

Slide the AVC out enough so that you can get at the screws which mount the Up to Air relay to the side of the AVC.  The Up to Air relay is located on the right hand side of the AVC chassis.

Make a drawing or use your phone and take a picture of the connections to the Up to Air relay  to make sure that you put the connectors on the same way when you install the new relay. Remove the 240 VAC Up to Air relay bracket and install the new 24V DC relay.

Reattach the relay bracket to the side of the AVC.

Reattach the cover and solenoid manifold.

Reattach the power cord and slide the AVC back in.

Next, you need to attach the Up to Air cable to the new turbo pump controller.   Refer to the turbo pump manual for information on how to make that connection.   There will be a Setpoint output or some kind of external status connection that provides 24V DC when the turbo pump is ON.

Note the polarity of the wires on the Up to Air cable.  On the end that plugs into the back of the AVC, the larger connector is the negative (ground) wire and the smaller one is the positive (+24V) connector.   There are only two wires in the Up to Air cable.  Red is positive and Black is ground.

If your turbo pump controller has some other voltage for the status signal (such as 12V or 5 V DC) then you will need to find a version of the Up to Air relay with that same voltage.

 

Once the new Up to Air relay modification is complete then you should hear the V5 vent solenoid click when the turbo pump is turned ON.

The V5 vent valve is designed to vent the turbo pump in order to prevent back-streaming of oil vapors into the system in the event of a system dump.  When the AVC was first designed the backing pumps were all rotary vane mechanical pumps that used oil.

New state-of-the-art turbo pumps are typically backed with a dry pump and also have built in vent valves.   If your new turbo pump is also dry backed (both of the turbo pumps listed below are then you do not need the V5 vent function.

The V5 vent valve was mounted on the rough side of the old turbo pump. If your new turbo pump is dry backed all you need to do to disable the V5 vent valve is to close the little needle valve that is either on the V5 vent valve itself or on the solenoid manifold near the V5 vent solenoid.   (The largest solenoid is V1 and then you count out from there, V2, V3….)

If your new turbo pump is backed with a rotary vane oil pump then the V5 vent valve still needs to be connected to the rough line. The V5 needle valve is set to 1/4 turn CCW from the fully closed (full CW) position.

In addition, you want to make sure that the mechanical pump turns OFF when the turbo pump is turned OFF.  If you need help with that contact RBD Instruments.

The affordably priced turbo pumps below can replace the original Balzers TPU 040 thru TPU 062 turbo pumps on older PHI surface analysis systems.  If you order one, make sure that you order it with a 4.5” CF flange.  A 4.5” CF flange will make it easier to adapt the new turbo to the existing vacuum connections.

Pfeiffer Hi Cube 80 Eco

HiCube Eco 80

HiCube Eco 80

https://www.pfeiffer-vacuum.com/en/products/vacuum-generation/pumping-stations/turbo-pumping-stations/hicube-eco/?detailPdoId=20022

 

 

 

 

 

 

 

Edwards T station nETX85H

T station

T station

https://shop.edwardsvacuum.com/products/ts85d3002/view.aspx

———————————————————————————————————

Become part of the RBD community! – Click here to sign up for occasional email updates from RBD Instruments  – https://rbdinstruments.com/subscribe.html

Replacing the water lines in a 16-050 heat exchanger

Print Friendly, PDF & Email

In a previous post we showed you how to remove dust from the radiator in a 16-020 or 16-050 X-ray source heat exchanger

For this post we will replace the flow switch, which is used in a 16-050 heat exchanger, and also replace all of the water lines.  The water lines in this particular heat exchanger have become green with contamination from long term corrosion of the fittings and copper X-ray source anode.

We will  remove the motor and pump as part of the hose replacement procedure  and will also clean and lubricate the pump to motor connection.

This procedure will take about 2 hours.   The replacement hose should be clear reinforced braided tubing that is 5/8” OD and 3/8” ID. This type of hose is available from Home Depot, McMaster-Carr, and Grainger. Measure the length of the existing water lines and then add another 10 feet for the16-050 lines.  You may be able to get by with 50 feet but a100 foot roll at Home Depot is only about $50.00.

 

 

 

 

 

You will also need 3 gallons of distilled water from a grocery store

First of all, drain as much water as possible out of the water lines. Here is the best way to do that –

Turn OFF the 16-050 OFF and also unplug the power cord from the back of the system. Remove the top cover on the 16-050 and also remove the electrical cover that is located in front left hand corner of the 16-050.

Locate the Crydom Power On relay under the switch cover.

Double check that the power cord to the 16-050 is unplugged.

Move the black output wire from pin one to pin two. Both black output wires should be on pin two.

move wire from here

move wire from here

 

 

 

 

 

 

move wire to here

move wire to here

 

 

 

 

 

 

 

 

Remove the quick disconnects from the X-ray source and plug them into the ends of the IN and OUT water lines that connect to the 16-050.  That way, when you turn on the 16-050 one line will have water coming out and the other one will have air going into it.

Plug the 16-050 power cord back in. Hold the water lines over a water tight pail (a plastic garbage container will work well). When you turn the 16-050 switch  back ON, the water will flow out of the end of the water lines.

Turn the switch breaker OFF when the water stops flowing and is mostly spurting air.

(Note, if you have a 16-020 heat exchanger move the Pump power cord to the HV receptacle and the you can control the pump by turning the circuit breaker ON and OFF)

Unplug the 16-050 power cord.

Remove the side covers on the 16-050.

Remove the DI cartridge and water filter. Note the position of the cartridges so that you can replace them in the same locations later.

Remove the pump from the motor (one screw and a clamp) and set it aside. You do not need to disconnect the wires.

Remove the fan (the outer screws in the square metal fan support).

Next, remove the radiator.

Clean the radiator by flushing it with some Alconox or other detergent followed by a thorough rinse out with warm water.

Clean the cooling fins as needed.

Reinstall the radiator

Replace all the water lines one at a time.  Remove a line by unscrewing the hose clamps and twisting the hose off the connector.  If the connector has barbs on it you will need to cut a slit in the hose with a box cutter or utility knife.  Use the old hose section to measure the length of replacement hose then cut the new hose to the same length. Feel free to make the new hoses slightly shorter or longer if that will make it fit better.

Also, to soften the line and make it easier to slide over a barbed connector, dip the line in Acetone for about 20 seconds.  This works quite well.   You could also heat the line with a heat gun on the low heat setting for a few seconds.

When you get to the flow switch,  unscrew the two front panel screws and pull the flow switch away from the fort panel.  If you are going to replace the flow switch, now is the time.  You may need to pull some blanking plugs off of the old flow switch.  Make sure that you put the new flow switch on exactly  the same way that the old one comes off as that is very important for the water flow direction.  Take a picture with your phone before you remove the lines for reference.   Also note the location of the wires in the terminal strip.

Note that the 220VAC version of the flow switch is no longer made and so in a 16-050 you would also need a 220VAC to 120VAC step down transformer. Contact RBD Instruments if you need a replacement flow switch.

Step down transformer mounted in 16-050

Step down transformer mounted in 16-050

 

 

 

 

 

 

 

 

 

 

terminal strip

terminal strip

 

 

 

 

 

 

 

16-050 schematic

16-050 schematic

 

 

 

After all of the water lines have been replaced, remove the quick disconnects from the water lines and plug the water lines together.

Reinstall the DI and water filter cartridges.  You should replace both the De-ionizer and filter cartridges if it has been a while (a few years) since the last time you replaced them.  If you replaced the x-ray anode in a 10-610 mono source as part of this maintenance then the deionizer cartridge MUST be replaced. Contact RBD Instruments if you need a deionizer cartridge or water filter.

Reinstall the motor.

Inspect the water pump and clean and lubricate (with grease) as necessary.   The  motor to pump connection can get a lot of debris and some rust accumulation.

Reattach the pump to the motor.

Put one gallon of fresh distilled water (from a grocery store, not lab DI) into the reservoir.

Plug in the 16-050 power cord.

Turn on the 16-050.

Immediately add another gallon of fresh DI water into the resistor as the water will be filling the lines and cartridges.

Check for leaks and tighten hose clamps as needed.

Add more water as needed until the level is correct on the back of the 16-050.  It will take 3 to 3.5 gallons.  Give it some time for the cartridges to fill up, about 10 to 15 minutes before you do a final top off.

If you have replaced the flow switch you can monitor pins 1 to 5 on the Coolant ON/OFF connector with an ohmmeter. With the 16-050 on and water flowing, adjust the potentiometer on the flow switch until the resistance between pins 1 and 5 drops down to 1 ohm or less.

Reconnect the Coolant ON/OFF cable.

Turn off the power to the 16-050 and unplug the power cord from the back of the system.

Confirm that the power cord is unplugged.

Move the wire on the terminal block form pin two back to pin one.

Replace the electrical cover.

Replace the side covers.

Replace the top cover.

Plug the 16-050 back in and turn on the power switch.

The 16-050 should turn on and off when the 32-095/6 is turned off and on.

Turn off the 32-095/6 and then reconnect the water lines to the X-ray source.

Procedure is complete.

 

Become part of the RBD community! – Click here to sign up for occasional email updates from RBD Instruments  – https://rbdinstruments.com/subscribe.html

This slideshow requires JavaScript.

11-065 Ion Gun Control no high voltage

Print Friendly, PDF & Email

Over the years I have seen this problem a few times and thought that it would be worth mentioning.

The symptom is that there is no high voltage on the 11-065 ion gun control HV1 board, or the voltage is low.

11-065 Ion Gun Control

11-065 Ion Gun Control

 

 

 

 

 

 

 

On the system, the symptom will  be no or low target current.

If you have this problem the first thing to check is whether or not C5 on the HV1 board is blown out.   It is an electrolytic capacitor and these days most electrolytic have some creases in them which allow the capacitor to expand and release gas and fluid when it fails.

HV 1 board in 11-065

HV 1 board in 11-065

 

 

 

 

 

 

 

The location of C5 on the HV1 board is shown below.

C5 location on the HV1 board in an 11-065

C5 location on the HV1 board in an 11-065

 

 

 

 

 

 

 

For a recent 11-065 repair the symptoms  were no high voltage on the beam and the COND was low. C5  on the HV1 board was obviously blown out so I replaced it.   However I still did not have any high voltage on the beam, and the COND voltage was also low.

The resistors, capacitors, diodes and transorbs on the HV1 board all checked out fine.  It was then that I remembered I have seen this problem once or twice before.   What happened is that when the C5 capacitor failed some of the electrolytic capacitor fluid seeped onto the board.  It was not really noticeable, but there was enough electrolytic capacitor fluid on the board to effectively add a high resistance to the board surface and load down the high voltage supplies.

The schematic for C5 in the filament circuit is shown below.

HV1 board schematic C5

HV1 board schematic C5

 

The solution was to clean the board with a diluted mixture of Alconox detergent and a tooth brush then rinse the board thoroughly in warm water.  Avoid wetting the transformers.  Blow the HV1 board dry with compressed air and then use a heat gun on low to completely dry the board.

After cleaning all of the electrolytic fluid off and drying the board everything worked fine.

Keep this in mind with any electrolytic capacitor failure where the capacitor blows out and  leaks on the board.

Sign up for RBD Instruments’ Technical Notifications