9103 USB Picoammeter Winter 2020 News

Print Friendly, PDF & Email

Last year, RBD introduced an updated 9103 USB Picoammeter, with 3 new models:

  • High-speed: 500 reads / second compared to 40 for the Standard Model
  • High-voltage: an isolated signal input with the ability to float the 9103 Picoammeter to ±5000 VDC.
  • High-speed / High Voltage: One model combining both features.

This year we’ll be working on adding new features to our Actuel application software and providing more comprehensive support and programming documentation.

Actuel 1.6 is Released

Actuel Version 1.6
Actuel Version 1.6


The latest version of Actuel (1.6) is now available, as is an updated User Guide. The guide has new information on setting up and programming the 9103 for high-speed communications. Both can be found here.

This release replaces the Beta release and has full support for high-speed sampling and data recording and graphing.

9103 TechSpot Article Series

This year, we’ll be running a series of articles here on the TechSpot blog with more information on the new 9103 models and features, as well as detailed configuration, application, and programming advice.

Some of the topics we’ll be covering include:

  • Programming the 9103 for high-speed data collection
  • Using the high-voltage reference
  • Proper use of the input ground
  • Troubleshooting 9103 communications

Keep your eye on here on TechSpot for these and other articles covering all of RBD’s products, and please consider subscribing.

Troubleshooting electronics resources

Print Friendly, PDF & Email

1-30-20   I updated this blog post to include a video on how to isolate a thermally unstable electronic component using a heat gun and cool spray.

When a problem develops with your XPS or AES spectrometer and you contact RBD Instruments for assistance, we frequently hear the same question – “What could be the source of the problem?”. The troubleshooting electronics tips below may help to find out.

Most problems on XPS and AES spectrometers can be broken into two broad categories – Optics problems and electronics problems. Optics (electron optics) are parts of the system that are installed on the vacuum chamber and include things like spherical capacitive analyzers, cylindrical mirror analyzers, sputter ion guns, x-ray sources, neutralizers and so on. Electronics include units such as power supplies and controllers.

Optics can generally (but not always) easily be tested by simply measuring the resistances on the electrical feedthroughs as specified in the optic’s manual. For example, a 04-303 ion gun should have contact between pins 1 and 2 (the filament) only. All other pins should be open to each other and to ground. By open, we mean that the electrical resistance is infinite. If pin 3 were shorted to ground, we would know that the objective lens inside the ion gun has a flake that is shorting it out, and the ion gun needs to be taken apart and rebuilt. But an optic component can have correct resistances and still have a problem (such as an open contact). Sometimes a short in an optic can also cause a failure in an electronic unit.

Electronic units are the source of problems with XPS and AES spectrometers more often than optics. Most of the students who use XPS and AES spectrometers in a university environment do not have enough training or experience with electronics to really dig into the electronic circuitry, but there are still a number of simple steps that can be taken that may result in a successful repair.

First of all, make sure that all power is off to any electronic unit that you work with. Measurements of voltages should always be performed by personal who have been training to work with electronic components and (often) high voltage. Potentially lethal voltages are present in these types of systems. If you are not properly trained, do not attempt to measure voltages in electronic units.

But, as long as the power is off and the unit is unplugged, you can safely visually inspect the unit and the boards inside of the unit for obvious signs of damage. For the most part, these are indicated by discoloration of the circuit boards, melted traces, melted transistors, dried up capacitors, and burnt resistors. If you find some components that are visibly damaged, then replacing them may solve the problem. Or, there may also be additional problems and the damaged components are just a symptom.

Some things to look for include:

Heat damage to a circuit board: Discoloration of the board which indicates that a component has been running very hot.

Melted components: Transistors (the plastic type) can actually melt when overheated. This is easy to spot.

Cracked capacitors: When capacitors dry out (after say 20 years or more) they can fail. See the links below for detailed instructions on how to test a capacitor. Be careful with larger value capacitors as they can hold a charge for a long time. Just to be safe, discharge capacitors before you measure them by clipping a resistor (a few hundred to a few thousand ohms is typical) across the contacts. This is not necessary for small value low voltage capacitors.

Burnt resistors: Resistors that burn up can turn to carbon and be difficult to identify without a schematic and board layout. Measure the resistance of suspect resistors with an ohmmeter. Sometimes you need to lift one end of the resistor (desolder one end of the resistor from the board) when measuring resistors in circuit as other components that may be in parallel with the resistor can affect the reading.

Shorted diodes and transistors: You can use a DVM in the diode check mode to test diodes and transistors for shorts. See the links below for detailed instructions on how to do that.

Dullness on transistor housing: If a metal housing (cover) transistor overheats often the finish on the transistor housing may be dull as a result of overheating. You can compare the finish to other similar transistors and then use a DVM in the diode check mode to test the suspected transistor. Plastic housing transistors that have melted are readily apparent.

Below I have listed some links to troubleshooting electronics resources. If you can’t fix the problem on your older Physical electronics (PHI) electronic unit yourself after following the steps in this post, we can provide you with technical support, repair services, loaners or exchange units. Contact us for more info at https://www.rbdinstruments.com/technical-support.html

 Troubleshooting Electronics resources;

How to isolate a thermal problem: https://www.youtube.com/watch?v=8lpil4WdQLo

Video on how to test a diode: https://www.youtube.com/watch?v=qSDRsz5-t7I

Article on how to test a diode; http://www.allaboutcircuits.com/vol_3/chpt_3/2.html

Video on how to test a transistor: https://www.youtube.com/watch?v=_3G8t-cV1d8

Article on how to test a transistor: http://www.tpub.com/neets/book7/25h.htm

Video on how to test a capacitor: https://www.youtube.com/watch?v=TFa6JfVu3B4

Article on how to measure a capacitor: http://www.wikihow.com/Measure-Capacitance

 General troubleshooting information:

http://physicsed.buffalostate.edu/pubs/StudentIndepStudy/EURP08/Links/circuit.html

how-to-count-pins-on-an-IC

how-to-count-pins-on-an-IC

Auger Electron Spectroscopy Tutorials

Print Friendly, PDF & Email

RBD Instruments’ microCMA is an affordable compact Auger Electron Spectroscopy (AES) cylindrical mirror analyzer package which is small enough to add to existing vacuum chambers.  For applications which require elemental information on the top most mono layers of specimens, AES can be the perfect solution. More information…

Following are links to a variety of Auger Electron Spectroscopy tutorials which explain in detail the principles of AES, the instrumentation, and the applications.

Wellesley College AES  (pdf)

Eagle Analytical Labs AES Theory

Hong Kong City EDU AES (pdf)

University of Delaware AES (pdf)

Johns Hopkins University Principles of AES

Auger_Electron Spectroscopy (Powerpoint)

MicroCMA Sample Data (pdf)

microCMA