80-365 analyzer control notes

This blog post is a compilation of notes which are helpful when troubleshooting or calibrating the 80-365 (and 80-366) SCA analyzer control.

The 80-365 SCA analyzer control provides all of the voltages to the SCA (spherical capacitive analyzer) used on older PHI XPS (X-ray photoelectron spectroscopy) systems. Those include the retard voltage, the pass energy, the lens voltages and the electron multiplier voltage.

To troubleshoot or calibrate the 80-365, follow the calibration procedure in the 80-365 manual. Note that high voltages are present on the 80-365 boards, always refer these types of measurements to technicians who have been properly trained in working with high voltage!

If are unable to repair the 80-365 yourself, please contact RBD Instruments and we can repair the boards for you.

80-365 Lens board calibration notes

You may need to load each word twice.   For example,18D4, 1830   you load 18D4, 18D4, 1830, 1830


For XPS and AES, the output voltages are positive, and the fine supplies are negative.  

Make sure that you set the polarity before programming on dual polarity boards.

1310 is + polarity for L3

1320 is + polarity for L2

Common data values

L2            Output C53/G5                  Fine Supply    – lead ground side R143   + lead right side R142/G5

1801,1800 – Adjust R45/A3 for -20V on fine supply

1800, 1808 – Adjust R77/B4 for – 20V on fine supply           Adjust R67/G3 for +409.6V on C53

18D4, 1830 – Adjust R67/G3 for +2500.0 V on C 53 output.  Readjust R77/B4 for -20V on fine supply

1800, 1800 – zero

L3            Output C41/E5                   Fine supply         – lead ground side R127/E5  + lead left side R120/E5

1601, 1600 – Adjust R52/C3 for -20V on fine supply

1600,1608 – Adjust R87/D4 for–20V on fine supply      Adjust R59/E3 for +409.6V on C41

16D4, 1630 – Adjust R59/E3 for +2500.0V on C 41 output. Readjust R87/D4 for -20V on fine supply

1600,1600 – Zero

NOTE:    If you have issues with the +5V supply dropping and voltages not loading properly, look at the local power supply board.  You may need to replace the 3524 regulator on the local power supply board.

80-365/66 Pass Energy board DAC bit test

To test individual bits:

Pass energy range = 1440.25674, or Volts / bit (( this is incorrect, range is 1920 or 2145))

Write out on DR11 A CSR 1   

Note:  You need to write the values out twice.

To set the DAC back to zero between bits, write out 1a00

The following table shows the voltage on the DAC and the output on the supply.   The pass energy gain is 144:1.

0000 0000 0000 0001

bit 0

0.022 V

1a00, 1a01 = .0001525 V on the DAC

0000 00000000 0010

bit 1

.044 V

1a00, 1a02 = .0003052 V on DAC

00000 0000 000 0100

bit 2

.088 V

1a00, 1a04 = .000 6V on DAC

0000 0000 0000 1000

bit 3

.019 V

1a00, 1a08 = .00122 V on DAC

0000 0000 0001 0000

bit 4

0.35 V

1a00, 1a10 = .00244 V on DAC

0000 0000 0010 0000

bit 5

0.7 V

1a00, 1a20 =.00488 V on DAC

0000 0000 0100 0000

bit 6

1.4 V

1a00, 1a40 = .0097 V on DAC

0000 0000 1000 0000

bit 7

2.8 V

1a00, 1a80 =.019 V on DAC

0000 0001 0000 0000

bit 8

5.63 V

1a01, 1a00  =.039 V on DAC

0000 0010 0000 0000

bit 9

11.25 V

1a02 ,1a00  = .078 V on DAC

0000 0100 0000 0000

bit 10

22.5 V

1a04 ,1a00  = .156 V on DAC

0000 1000 0000 0000

bit 11

45 V

1a08 ,1a00   = .3125 V on DAC

0001 0000 0000 0000

bit 12

90.02 V

1a10 ,1a00  = .625 V on DAC

0010 0000 0000 0000

bit 13

180.03 V

1a20,1a00   =1.25 V on DAC

0100 0000 0000 0000

bit 14

360.06 V

1a40 ,1a00   = 2.5 V on DAC

1000 0000 0000 0000

bit 15

720.13 V

1a80 ,1a00  = 5.0 V on DAC

All Bits:

1AFF, ,1a00   = 10 V on DAC

1440.25 V on output

80-365 / 366 Pass energy board range note

The 80-365 and 80-366 pass energies have different maximums.

The 80-365 is 1920V

The 80-366 is 2145V

Make sure that you have the correct procedure when you calibrate the board.

80-365 Local Power supply board notes

Capacitor Voltage Comments
C33 22V +/1 1.5V   adjust R27 Transformer output before regulator
C35 +15 Pass energy board power
C36 -15 Pass energy board power
C34 +5V Pass energy board power
     
C9 22V +/1 1.5V  adjust R3 Transformer output before regulator
C10 +15 Lens board power
C7 -15V Lens board power
C12 +5V Lens board power
     
CR35 cathode to CR36 anode +225V Pass energy board power
CR 37 anode to CR36 anode -225V Pass energy board power
     
CR17 cathode to CR17 anode +150V Lens board power
CR18 anode to CR17 anode -150 Lens board power
     

If the voltages are low when the pass energy or lens boards are installed, most likely the issue is a weak 3524 regulator. Replace it with a new SG3524N

80-365 Retard supply bytes

bitlow byte (hex) hi byte (hex)DAC V
0110012000
1110112000.00015259
2110212000.00030518
3110412000.00061035
4110812000.0012207
5111012000.00244141
6112012000.00488281
7114012000.00976563
8118012000.01953125
9110012010.0390625
10110012020.078125
11110012040.15625
12110012080.3125
13110012100.625
14110012201.25
15110012402.5
16110012805
All11FF12FF10

Electronics Trouble-Shooting Secret Weapon

The other day I was working on a particularly difficult electronics problem with an ion gun controller and to help figure it out, I needed to dust off my trusty Huntron Tracker. I don’t need to use it very often, but when needed, there is nothing better for troubleshooting electronics problems.

Huntron Tracker
Huntron Tracker

First introduced in 1979, the Huntron Tracker displays an analog signature, which is a combination of resistive, capacitive, inductive, and semi-conductive characteristics. This visual display is very helpful for comparing electronics components on a defective board. The Tracker is particularly useful for comparing components on a known defective electronics board with a known good one. The Tracker applies a tiny AC voltage to the probes so you can test components with no power applied to the board that you are testing.

Compare known good board components to defective board components
Compare known good board to defective board

You can usually find defective electronics components with a DVM (digital volt meter) by testing diodes and capacitors, then measuring resistance values. But there are times when all of the individual components check out as OK with a DVM, but you know that there must be at least one defective component because the board does not work properly. For those times, the Huntron Tracker works like a champ every time. By finding some components that read differently with the Tracker, you can get a clue and ultimately, find the problem. 

The early model Huntron Trackers had a little CRT display and three power level settings. Those models are still available on EBay for about $300.00. The Tracker that I use is one of these early ones and it still works well.

Over the years Huntron Trackers have evolved and today’s models include more power settings, automated testing, and software. For more info visit Huntron at –

https://huntron.com/products/tracker28s.htm

If a new Huntron Tracker is out of your price range or you can’t find an older one, there are also inexpensive curve tracer kits available on eBay that provide Tracker functionality using an oscilloscope. To find those, go to eBay and search for Curve Tracer kit.

Curve tracer board

Research Gases for Laboratories

Laboratory gases are readily available in large cylinders from companies such as Airgas, Norco and local welding supply companies.

Large gas cylinders

But for small quantities of gases or specialty gases used in vacuum optics such as UV sources and Ion guns, it may make more fiscal sense to use lecture bottles instead of the larger size gas cylinders which are commonly found in laboratories.

Lecture bottles are small compressed gas cylinders that are typically 12-18 inches long and 2 to 3 inches in diameter.  

Lecture Bottle

They hold approximately 2 cubic feet of gas and are pressurized to as much as 1800 PSI.   High pressure gas cylinders require a regulator to step the pressure down.  The pressure required for the application will determine which regulator is needed.   For example, the Varian variable leak valve used on many 04-303 ion sources can take a maximum pressure of 500 PSI.  However, it is recommended that the argon gas pressure be set to 15 to 25 PSI for best results.    

Since lecture bottles are small, it costs less to ship them.  But most importantly, when you buy a lecture bottle you are buying the bottle as well as the gas.  Full sized cylinders are generally rented for a monthly fee in addition to the cost of the gas and delivery. Factoring in the monthly rental fee for the cylinder, a lecture bottle could be much less expensive over time. Especially for optics like UV sources where you may only use it a few times a year.

In the US, Matheson provides a wide assortment of specialty gases in lecture bottles.  Matheson also has a worldwide distribution network.

https://www.mathesongas.com/gases

Ultra-high purity gases have 5 nines (99.999%) purity and Research grade gases have 6 nines (99.9999%) purity.   

Another provider in the US that carries Lecture bottles is Advanced Specialty Gases –

https://www.advancedspecialtygases.com/PureGas.html

In Europe,  Messer can provide gases in small cylinders:

https://www.messergroup.com/

https://www.messer.de/spezialgase

In the UK, CK Gas Products provides a variety of gases in lecture bottles:

http://www.ckgas.com/lecture-bottles/

Gas regulators are available from these companies as well as from Grainger. Be sure to specify the type of connection on the gas bottle when you order it and also to order the correct connection on the regulator. For best results, insert a valve between the regular and the outlet line. Finally, you also will need to pump out the line and regulator before opening the gas bottle as otherwise your gas will become contaminated with air.