80-365 analyzer control notes

Print Friendly, PDF & Email

This blog post is a compilation of notes which are helpful when troubleshooting or calibrating the 80-365 (and 80-366) SCA analyzer control.

The 80-365 SCA analyzer control provides all of the voltages to the SCA (spherical capacitive analyzer) used on older PHI XPS (X-ray photoelectron spectroscopy) systems. Those include the retard voltage, the pass energy, the lens voltages and the electron multiplier voltage.

To troubleshoot or calibrate the 80-365, follow the calibration procedure in the 80-365 manual. Note that high voltages are present on the 80-365 boards, always refer these types of measurements to technicians who have been properly trained in working with high voltage!

If are unable to repair the 80-365 yourself, please contact RBD Instruments and we can repair the boards for you.

80-365/66 Lens Board DAC bit test

To test individual bits:  Write out on DR11 A CSR 1   

Note:   Write the low order byte out first, then the high order byte. If you get out of sequence you need to turn off the card rack power to reset the board and start over.

Lens 2

Measure from the left side of R62 to the right side of R94/G4

BitLow byteHigh byteDAC voltage
0160016000.0000
1160216000.0012
2160416000.0024
3160616000.0049
4161016000.0098
5162016000.0195
6164016000.0391
7168016000.0781
8160016010.1563
9160016020.3125
10160016040.6250
11160016081.250
12160016102.500
13160016205.00
1416FF163F10.00

Lens 3

Measure from the right side of R70 to the right side of R94/G4

BitLow byteHigh byteDAC voltage
0180018000.0000
1180218000.0012
2180418000.0024
3180618000.0049
4181018000.0098
5182018000.0195
6184018000.0391
7188018000.0781
8180018010.1563
9180018020.3125
10180018040.6250
11180018081.250
12180018102.500
13180018205.00
1418FF183F10.00

80-365 Lens board calibration notes

For XPS and AES, the output voltages are positive, and the fine supplies are negative.  Make sure that you set the polarity before programming on dual polarity boards.

1310 is + polarity for L3

1320 is + polarity for L2

Common data values

L2            Output C53/G5                  Fine Supply    – lead ground side R143   + lead right side R142/G5

1801,1800 – Adjust R45/A3 for -20V on fine supply

1800, 1808 – Adjust R77/B4 for – 20V on fine supply           Adjust R67/G3 for +409.6V on C53

18D4, 1830 – Adjust R67/G3 for +2500.0 V on C 53 output.  Readjust R77/B4 for -20V on fine supply

1800, 1800 – zero

L3            Output C41/E5                   Fine supply         – lead ground side R127/E5  + lead left side R120/E5

1601, 1600 – Adjust R52/C3 for -20V on fine supply

1600,1608 – Adjust R87/D4 for–20V on fine supply      Adjust R59/E3 for +409.6V on C41

16D4, 1630 – Adjust R59/E3 for +2500.0V on C 41 output. Readjust R87/D4 for -20V on fine supply

1600,1600 – Zero

NOTE:    If you have issues with the +5V supply dropping and voltages not loading properly, look at the local power supply board.  You may need to replace the 3524 regulator on the local power supply board.

80-365/66 Pass Energy board DAC bit test

To test individual bits:

Pass energy range = is 0 to 10V on the DAC = 1920 or 2145 depending on the model number of your analyzer control.

Write out on DR11 A CSR 1   

Note:  Write the low order byte out first, then the high order byte. If you get out of sequence you need to turn off the card rack power to reset the board and start over.

To set the DAC back to zero between bits, write out 1a00 twice

The following table shows the voltage on the DAC measured from TP24 / C2 to TP24B /C2  

0000 0000 0000 0001

bit 0

0.022 V

1a01, 1a00 = .0001525 V on the DAC

0000 00000000 0010

bit 1

.044 V

1a02, 1a00 = .0003052 V on DAC

00000 0000 000 0100

bit 2

.088 V

1a04, 1a00 = .000 6V on DAC

0000 0000 0000 1000

bit 3

.019 V

1a08, 1a00 = .00122 V on DAC

0000 0000 0001 0000

bit 4

0.35 V

1a10, 1a00 = .00244 V on DAC

0000 0000 0010 0000

bit 5

0.7 V

1a20, 1a00 =.00488 V on DAC

0000 0000 0100 0000

bit 6

1.4 V

1a40, 1a00 = .0097 V on DAC

0000 0000 1000 0000

bit 7

2.8 V

1a80, 1a00 =.019 V on DAC

0000 0001 0000 0000

bit 8

5.63 V

1a00, 1a01  =.039 V on DAC

0000 0010 0000 0000

bit 9

11.25 V

1a00 ,1a02  = .078 V on DAC

0000 0100 0000 0000

bit 10

22.5 V

1a00 ,1a04  = .156 V on DAC

0000 1000 0000 0000

bit 11

45 V

1a00 ,1a08   = .3125 V on DAC

0001 0000 0000 0000

bit 12

90.02 V

1a00 ,1a10  = .625 V on DAC

0010 0000 0000 0000

bit 13

180.03 V

1a00,1a20   =1.25 V on DAC

0100 0000 0000 0000

bit 14

360.06 V

1a00 ,1a40   = 2.5 V on DAC

1000 0000 0000 0000

bit 15

720.13 V

1a00 ,1a80  = 5.0 V on DAC

All Bits:

1A00, ,1aFF   = 10 V on DAC

1920 or 2145 VDC on the output across C56

80-365 / 366 Pass energy board range note

The 80-365 and 80-366 pass energies have different maximums.

The 80-365 is 1920V

The 80-366 is 2145V

Make sure that you have the correct procedure when you calibrate the board.

Measuring the Pass Energy output voltages

There are some scale factors involved when measuring the pass energy voltages.   

If you are measuring the pass energy voltage across C56 on the pass energy board, the scale factor is approximately X 1.34.  For example, if you set the pass energy to 187.85, the output voltage across C56 is 187.85 X 1.34 = 251.8 VDC.   You can calculate any pass energy actual voltage value by multiplying the pass energy in the software (set up an alignment or survey) by 1.34.

If you are measuring the test points in the filter box, the scale factor is to divide by 1.7.    For example, a pass energy of 187.5 divided by 1.7 = 110.3 VDC.  If you set up the pass energy to 187.5 in the software, you will see approximately 110.3 VDC between the IC and OC test points in the filter box. The resistors in the filter box divide the voltages so that they are correct on the IC, OC and MR contacts in the analyzer.

To summarize –

C56 output on pass energy board = Pass Energy X 1.34

Test points in filter box = Pass Energy divided by 1.7

80-365 Local Power supply board notes

Capacitor Voltage Comments
C33 22V +/1 1.5V   adjust R27 Transformer output before regulator
C35 +15 Pass energy board power
C36 -15 Pass energy board power
C34 +5V Pass energy board power
     
C9 22V +/1 1.5V  adjust R3 Transformer output before regulator
C10 +15 Lens board power
C7 -15V Lens board power
C12 +5V Lens board power
     
CR35 cathode to CR36 anode +225V Pass energy board power
CR 37 anode to CR36 anode -225V Pass energy board power
     
CR17 cathode to CR17 anode +150V
CR18 anode to CR17 anode -150
 

TIP: If the voltages are low when the pass energy or lens boards are installed, most likely the issue is a weak 3524 regulator. Replace it with a new SG3524N

80-365 Retard supply bytes

bitlow byte (hex) hi byte (hex)DAC V
0110012000
1110112000.00015259
2110212000.00030518
3110412000.00061035
4110812000.0012207
5111012000.00244141
6112012000.00488281
7114012000.00976563
8118012000.01953125
9110012010.0390625
10110012020.078125
11110012040.15625
12110012080.3125
13110012100.625
14110012201.25
15110012402.5
16110012805
All11FF12FF10

80-365 Lens Board Single Polarity modification

The dual polarity lens board high voltage switching relays can breakdown at voltages above 1kV and cause a variety of intermittent problems.   Since most systems do not use the negative polarity, removing the high voltage switching relays and converting the lens board to a the single (positive) polarity can solve the breakdown problem and make the board more reliable.

Modification Procedure:

  1. Remove the red cover (3 screws) that shields the high voltage components.
  2. Unsolder and remove the two Kilovac high voltage relays (K1, K2)
  3. Jumper the relays as shown in the pictures below.
  • Solder a jumper on the back of the board on IC 22 between pins 2 and 3.
  • Solder a jumper on the back of the board on IC 21 pins 6 and 7.
  • Remove ICs U13, U21 and U22 (Note that some boards do not have sockets in which case you need to un-solder the ICs before putting the jumper in).
  • Cover the open sockets on U13, U21 and U22 with electrical tape.  That will make it easier if the board ever needs to be repaired again as it will indicate that those IC sockets are not used.
  • Check the Single Polarity box on the upper left-hand side of the board.

You can also remove these components as they are no longer used –

R54 (pot) 1k ohm

R64

R67 (pot) 1k ohm

R65

Q1, Q2  2N3704

Q10, Q10A    2N3725

80-365 Local Power supply board note

Cr17 and CR18 (1N3048B 150V Zener diodes) can run hot.  If they look discolored they should be replaced.

Also, R46 and R47 (1K ohm ½ watt) can run hot and if they are discolored they should be replaced with a 1k ohm 1 watt resistor.

Leave a Reply

Your email address will not be published. Required fields are marked *