How to test an ion gauge filament

Print Friendly, PDF & Email

This post will explain how to test and replace the nude ion gauge filament assembly on a Physical Electronic (PHI) X-ray photoelectron, Auger electron or SIMS system. Look at the pictures at the bottom of the post before you read the procedures.

Background – On most PHI surface analysis systems the ion gauge filament is located either above the table tops in back of the vacuum chamber, or just under the tabletops.  The newer (as in less than 30 years old) systems have a cover that protects the user from the exposed electrical connections to the ion gauge pins. On the oldest PHI systems the ion gauge pins are exposed, but located under the table tops and difficult to access (and so relatively safe).

Here are links to some videos that explain how an  ion gauge works –

https://www.youtube.com/watch?v=IKKuWeEShM4

https://www.youtube.com/watch?v=6zv_Y0_vwsg

How to measure the resistance on the ion gauge:

  1. Turn off the DGCIII (or other brand of) ion gauge control.  This is not only the first step; it is the most important step! Ion gauge controls such as the DGCIII used on older PHI systems have about 200 volts of DC on the grid. If you do not turn off the DGCIII (or other) ion gauge control before removing the wires to the ion gauge you will likely receive a potentially lethal electrical shock. If you are not familiar with working safely with electricity then refer this procedure to qualified personnel.  Or, turn off the DGCIII and also and also unplug the 120 VAC power cord on the back of the DGCIII and then there is no danger of electrical shock.
  2. Loosen the set screws on the shield retaining collar. Do not loosen or remove the bolts that connect the ion gauge to the system! See the pictures at the bottom of this post for clarification.
  3. Loosen the strain relief screws and slide the shield out and away from the ion gauge, being careful to support the wires.
  4. Using an 048-4 spline wrench, loosen the ion gauge coupler set screws by turning the set screws closest to the flange CCW 1 to 2 turns and then gently pulling the coupler and wires off of the ion gauge pins. TIP: As you remove the couplers turn the set screws CW 1 turn so that they do not fall out of the couplers. RBD provides the 048-4 spline wrench and the setscrews.
  5. Use an ohmmeter and measure the resistance between the center filament pin (common) to the outside two filament pins. See the picture below. The pins resemble a smiley face and the filaments are the smile. The grid is the eyes (some ion gauges have 2 grid pins, some only one), and the collector is the center pin (nose). The filament resistances should be 1 ohm or less when measured from the center filament post to the outside two filament post. If a filament is burnt out (open) then the resistance will be infinite or some high value if there is a tungsten coating on the filament base.
  6. If one filament is burnt out but the other one is good, then you can switch filaments.  If you have 3 wires connected to the filaments then swap the outside two filament connectors. If you have just two filament wires, then move the outside filament wire to the other side.
  7. If both filaments are open, then the filaments need to be replaced. See the replacement procedure in the following section.

ion-gauge-wire-connection-types

ion-gauge-wire-connectionsHow to replace the ion gauge filaments:

  1. Vent the chamber.
  2. If not already done, remove the connectors from the ion gauge as per the previous procedure.
  3. Remove the bolts from the ion gauge flange.
  4. Remove the shield retaining collar.
  5. Carefully remove the ion gauge.
  6. Loosen the top set screws on the 3 filament base connectors. These are typically .050 hex screws.
  7. Remove the old filament assembly.
  8. Install the new filament assembly and tighten the set screws. Make sure that the filaments are parallel with the grid.
  9. Use a new copper gasket and place the ion gauge up to the flange. Make sure that the filaments are facing down. They will not line up perfectly parallel, so just choose the best position where the bolt holes line up. By facing the filaments down you will prevent any debris from falling onto the grid which may short out and damage the ion gauge control.
  10. Place the shield retaining ring up next to the ion gauge flange and rotate it so that the set screws in the shield retaining ring are accessible.
  11. Insert the bolts and tighten the flange.
  12. Reattach the ion gauge couplers. Make sure that the pins are bent slightly in towards the center collector wire so that none of the pins will short to the shield when it is installed.
  13. Carefully slide the shield over the wires and press the shield firmly into the shield retaining collar.
  14. Tighten the shield retaining set screws.
  15. Slightly tighten the strain relief screws.

That’s it!  Pump the system down and the ion gauge is ready to turn on once you get into the 10-4 Torr or better vacuum.

RBD Instruments provides replacement filament assemblies, complete ion gauge assemblies and the required spline and Allen wrenches. Contact us for more information.

This slideshow requires JavaScript.

Leave a Reply

Your email address will not be published. Required fields are marked *